Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 122: 110594, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37441807

RESUMO

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with few pharmacological treatments. Minocycline, a tetracycline derivative that inhibits microglial activation, has been well-identified with anti-inflammatory properties and neuroprotective effects. A growing body of research suggests that ASD is associated with neuroinflammation, abnormal neurotransmitter levels, and neurogenesis. Thus, we hypothesized that minocycline could improve autism-related behaviors by inhibiting microglia activation and altering neuroinflammation. To verify our hypothesis, we used a mouse model of autism, BTBR T + Itpr3tf/J (BTBR). As expected, minocycline administration rescued the sociability and repetitive, stereotyped behaviors of BTBR mice while having no effect in C57BL/6J mice. We also found that minocycline improved neurogenesis and inhibited microglia activation in the hippocampus of BTBR mice. In addition, minocycline treatment inhibited Erk1/2 phosphorylation in the hippocampus of BTBR mice. Our findings show that minocycline administration alleviates ASD-like behaviors in BTBR mice and improves neurogenesis, suggesting that minocycline supplementation might be a potential strategy for improving ASD symptoms.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Transtorno Autístico/tratamento farmacológico , Transtorno do Espectro Autista/tratamento farmacológico , Minociclina/uso terapêutico , Microglia , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Camundongos Endogâmicos , Modelos Animais de Doenças
2.
Ecotoxicol Environ Saf ; 256: 114863, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37011512

RESUMO

Aluminum (Al) has been classified as a cumulative environmental pollutant that endangers human health. There is increasing evidence to suggest the toxic effects of Al, but the specific action on human brain development remains unclear. Al hydroxide (Al(OH)3), the most common vaccine adjuvant, is the major source of Al and poses risks to the environment and early childhood neurodevelopment. In this study, we explored the neurotoxic effect of 5 µg/ml or 25 µg/ml Al(OH)3 for six days on neurogenesis by utilizing human cerebral organoids from human embryonic stem cells (hESCs). We found that early Al(OH)3 exposure in organoids caused a reduction in the size, deficits in basal neural progenitor cell (NPC) proliferation, and premature neuron differentiation in a time and dose-dependent manner. Transcriptomes analysis revealed a markedly altered Hippo-YAP1 signaling pathway in Al(OH)3 exposed cerebral organoid, uncovering a novel mechanism for Al(OH)3-induced detrimental to neurogenesis during human cortical development. We further identified that Al(OH)3 exposure at day 90 mainly decreased the production of outer radial glia-like cells(oRGs) but promoted NPC toward astrocyte differentiation. Taken together, we established a tractable experimental model to facilitate a better understanding of the impact and mechanism of Al(OH)3 exposure on human brain development.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Neurais , Pré-Escolar , Humanos , Hidróxido de Alumínio/metabolismo , Neurogênese , Organoides/metabolismo
3.
J Hazard Mater ; 453: 131379, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37054645

RESUMO

(R,S)-ketamine (ketamine) has been increasingly used recreationally and medicinally worldwide; however, it cannot be removed by conventional wastewater treatment plants. Both ketamine and its metabolite norketamine have been frequently detected to a significant degree in effluents, aquatic, and even atmospheric environments, which may pose risks to organisms and humans via drinking water and aerosols. Ketamine has been shown to affect the brain development of unborn babies, while it is still elusive whether (2 R,6 R)-hydroxynorketamine (HNK) induces similar neurotoxicity. Here, we investigated the neurotoxic effect of (2 R,6 R)-HNK exposure at the early stages of gestation by applying human cerebral organoids derived from human embryonic stem cells (hESCs). Short-term (2 R,6 R)-HNK exposure did not significantly affect the development of cerebral organoids, but chronic high-concentration (2 R,6 R)-HNK exposure at day 16 inhibited the expansion of organoids by suppressing the proliferation and augmentation of neural precursor cells (NPCs). Notably, the division mode of apical radial glia was unexpectedly switched from vertical to horizontal division planes following chronic (2 R,6 R)-HNK exposure in cerebral organoids. Chronic (2 R,6 R)-HNK exposure at day 44 mainly inhibited the differentiation but not the proliferation of NPCs. Overall, our findings indicate that (2 R,6 R)-HNK administration leads to the abnormal development of cortical organoids, which may be mediated by inhibiting HDAC2. Future clinical studies are needed to explore the neurotoxic effects of (2 R,6 R)-HNK on the early development of the human brain.


Assuntos
Células-Tronco Embrionárias Humanas , Ketamina , Células-Tronco Neurais , Humanos , Ketamina/metabolismo , Antidepressivos/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Neurais/metabolismo , Encéfalo/metabolismo
4.
Behav Brain Res ; 445: 114384, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36889463

RESUMO

Autism spectrum disorder (ASD) is a complicated, heterogeneous disorder characterized by social interaction deficits and repetitive stereotypical behaviors. Neuroinflammation and synaptic protein dysregulation have been implicated in ASD pathogenesis. Icariin (ICA) has proven to exert neuroprotective function through anti-inflammatory function. Therefore, this study aimed to clarify the effects of ICA treatment on autism-like behavioral deficits in BTBR mice and whether these changes were related to modifications in the hippocampal inflammation and the balance of excitatory/inhibitory synapses. ICA supplementation (80 mg/kg, once daily for ten days, i.g.) ameliorated social deficits, repetitive stereotypical behaviors, and short-term memory deficit without affecting locomotor activity or anxiety-like behaviors of BTBR mice. Furthermore, ICA treatment inhibited neuroinflammation via decreasing microglia number and the soma size in the CA1 region of the hippocampus, as well as the protein levels of proinflammatory cytokines in the hippocampus of BTBR mice. In addition, ICA treatment also rescued excitatory-inhibitory synaptic protein imbalance by inhibiting the increased vGlut1 level without affecting the vGAT level in the BTBR mouse hippocampus. Collectively, the observed results indicate that ICA treatment alleviates ASD-like features, mitigates disturbed balance of excitatory-inhibitory synaptic protein, and inhibits hippocampal inflammation in BTBR mice, and may represent a novel promising drug for ASD treatment.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Transtorno Autístico/metabolismo , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Inflamação/metabolismo , Hipocampo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Comportamento Social
5.
Int Immunopharmacol ; 116: 109792, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738679

RESUMO

Depression is a common mental disease and is highly prevalent in populations. Dysregulated neuroinflammation and concomitant-activated microglia are involved in the pathogenesis of depression. Experimental evidence has indicated that fullerenol exerts anti-neuroinflammation and protective effects against neurological diseases. Here, we evaluated fullerenol's effects against lipopolysaccharide (LPS)-induced mouse depressive-like behaviors. Fullerenol treatment produced an antidepressant-like effect, as indicated by preventing the LPS-induced reduction in the sucrose preference and shortening the immobility durations in both the tail suspension test and the forced swim test. We found that fullerenol treatment mitigated LPS-induced hippocampal microglia activation and released proinflammatory cytokines. Meanwhile, fullerenol promoted hippocampus neurogenesis, evidenced by increased DCX-positive cells in LPS-treated mice. Hippocampal RNA-Seq analysis revealed proinflammatory cytokine and neurogenesis involved in fullerenol's antidepressant-like effects. Our data indicate that fullerenol exerts antidepressant effects, which might be due to beneficial functions in reducing neuroinflammatory processes and promoting neurogenesis in the hippocampus.


Assuntos
Antidepressivos , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Citocinas/metabolismo , Natação , Hipocampo , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Modelos Animais de Doenças
6.
Sci Total Environ ; 865: 161251, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587670

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP), a ubiquitous environmental endocrine disruptor, is widely used in consumer products. Increasing evidence implies that DEHP influences the early development of the human brain. However, it lacks a suitable model to evaluate the neurotoxicity of DEHP. Using an established human cerebral organoid model, which reproduces the morphogenesis of the human cerebral cortex at the early stage, we demonstrated that DEHP exposure markedly suppressed cell proliferation and increased apoptosis, thus impairing the morphogenesis of the human cerebral cortex. It showed that DEHP exposure disrupted neurogenesis and neural progenitor migration, confirmed by scratch assay and cell migration assay in vitro. These effects might result from DEHP-induced dysplasia of the radial glia cells (RGs), the fibers of which provide the scaffolds for cell migration. RNA sequencing (RNA-seq) analysis of human cerebral organoids showed that DEHP-induced disorder in cell-extracellular matrix (ECM) interactions might play a pivotal role in the neurogenesis of human cerebral organoids. The present study provides direct evidence of the neurodevelopmental toxicity of DEHP after prenatal exposure.


Assuntos
Dietilexilftalato , Células-Tronco Embrionárias Humanas , Ácidos Ftálicos , Gravidez , Feminino , Humanos , Dietilexilftalato/toxicidade , Neurogênese
7.
Front Mol Neurosci ; 15: 1023765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523605

RESUMO

Valproic acid (VPA) exposure during pregnancy leads to a higher risk of autism spectrum disorder (ASD) susceptibility in offspring. Human dorsal forebrain organoids were used to recapitulate course of cortical neurogenesis in the developing human brain. Combining morphological characterization with massive parallel RNA sequencing (RNA-seq) on organoids to analyze the pathogenic effects caused by VPA exposure and critical signaling pathway. We found that VPA exposure in organoids caused a reduction in the size and impairment in the proliferation and expansion of neural progenitor cells (NPCs) in a dose-dependent manner. VPA exposure typically decreased the production of outer radial glia-like cells (oRGs), a subtype of NPCs contributing to mammalian neocortical expansion and delayed their fate toward upper-layer neurons. Transcriptomics analysis revealed that VPA exposure influenced ASD risk gene expression in organoids, which markedly overlapped with irregulated genes in brains or organoids originating from ASD patients. We also identified that VPA-mediated Wnt/ß-catenin signaling pathway activation is essential for sustaining cortical neurogenesis and oRGs output. Taken together, our study establishes the use of dorsal forebrain organoids as an effective platform for modeling VPA-induced teratogenic pathways involved in the cortical neurogenesis and oRGs output, which might contribute to ASD pathogenesis in the developing brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...